

 [image: image2.png]UNIA EUROPEISKA
ROPEISK
FUNDUSZ SPOLECZNY

Projekt „Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na

 współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy”
TS

library("AER")

data("UKNonDurables")

quarterly consumption of non-durables in the United Kingdom

plot(UKNonDurables)
[image: image3.emf]Time

UKNonDurables

1955 1960 1965 1970 1975 1980 1985 1990

30000

40000

50000

60000

tsp(UKNonDurables) #returns the tsp attribute

working with irregular series (e.g., with many ﬁnancial time series).

Consequently, various implementations for irregular time series have emerged

in contributed R packages, the most ﬂexible of which is “zoo”, provided by

the zoo package [153]

[1] 1955.00 1988.75 4.00

str(UKNonDurables)
Time-Series [1:136] from 1955 to 1989: 24030 25620 26209 27167 24620 25972 26285 27659 24780 26519 ...

time(UKNonDurables)[1:10]
[1] 1955.00 1955.25 1955.50 1955.75 1956.00 1956.25 1956.50 1956.75 1957.00 1957.25

window(UKNonDurables, end = c(1956, 4)) #podzbiór

 Qtr1 Qtr2 Qtr3 Qtr4

1955 24030 25620 26209 27167

1956 24620 25972 26285 27659

(Linear) ﬁltering [154]
data("UKDriverDeaths")

on car drivers

killed or seriously injured in the United Kingdom from 1969(1) through

1984(12). These are also known as the “seatbelt data”, as they were used

by Harvey and Durbin (1986) for evaluating the eﬀectiveness of compulsory
wearing of seatbelts introduced on 1983-01-31

plot(UKDriverDeaths)
[image: image4.emf]Time

UKDriverDeaths

1970 1975 1980 1985

1000

1500

2000

2500

lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12),col = 2)
[image: image5.emf]Time

UKDriverDeaths

1970 1975 1980 1985

1000

1500

2000

2500

plot(rollapply(UKDriverDeaths,12, mean)) # ruchome okno
[image: image6.emf]Time

rollapply(UKDriverDeaths, 12, mean)

1970 1975 1980 1985

1400

1600

1800

2000

plot(rollapply(UKDriverDeaths, 12, sd))
[image: image7.emf]Time

rollapply(UKDriverDeaths, 12, sd)

1970 1975 1980 1985

150

200

250

300

350

Decomposition [155]

dd_dec <- decompose(log(UKDriverDeaths))

simple symmetric ﬁlter as illustrated above for extracting the trend

and derive the seasonal component by averaging the trend-adjusted observations

from corresponding periods

c("seasonal", "trend", "random", "figure", "type"),
plot(dd_dec)
[image: image8.emf]7.0

7.4

7.8

observed

7.2

7.4

7.6

trend

-0.1

0.1

seasonal

-0.15

0.00

0.15

1970 1975 1980 1985

random

Time

Decomposition of additive time series

plot(dd_dec$seasonal)
[image: image9.emf]Time

dd_dec$seasonal

1970 1975 1980 1985

-0.1

0.0

0.1

0.2

plot(lines(dd_dec$figure))
[image: image10.emf]2 4 6 8 10 12

-0.1

0.0

0.1

0.2

Index

dd_dec$figure

plot(dd_dec$trend)
[image: image11.emf]Time

dd_dec$trend

1970 1975 1980 1985

7.2

7.3

7.4

7.5

7.6

plot(dd_dec$random)
[image: image12.emf]Time

dd_dec$random

1970 1975 1980 1985

-0.15

-0.05

0.05

0.10

0.15

dd_stl <- stl(log(UKDriverDeaths), s.window = 13)

iteratively ﬁnds the seasonal and trend

components by loess smoothing of the observations in moving data windows

of a certain size
plot(dd_stl)
[image: image13.emf]7.0

7.4

7.8

data

-0.1

0.1

seasonal

7.2

7.4

7.6

trend

-0.15

0.00

0.15

1970 1975 1980 1985

remainder

time

plot(dd_dec$trend, ylab = "trend")

lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2)
[image: image14.emf]Time

trend

1970 1975 1980 1985

7.2

7.3

7.4

7.5

7.6

stl() yielding a smoother curve.
Exponential smoothing

dd_past <- window(UKDriverDeaths, end = c(1982, 12))

dd_hw <- HoltWinters(dd_past)
Unknown parameters are determined by minimizing the squared prediction error.

The additive Holt-Winters prediction function (for time series with period length p) is

Yhat[t+h] = a[t] + h * b[t] + s[t + p + 1 + (h - 1) mod p],

where a[t], b[t] and s[t] are given by

a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])

b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]

s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
dd_pred <- predict(dd_hw, n.ahead = 24)

plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths))

lines(UKDriverDeaths)
[image: image15.emf]Holt-Winters filtering

Time

Observed / Fitted

1970 1975 1980 1985

1000

1500

2000

2500

*
Classical Model-Based Analysis

set.seed(1234)

x <- filter(rnorm(100), 0.9, method = "recursive") #AR(1)

acf(x)
[image: image16.emf]0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

Series x

pacf(x)
[image: image17.emf]5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

Lag

Partial ACF

Series x

ar(x)
Call:

ar(x = x)

Coefficients:

 1

0.9279

Order selected 1 sigma^2 estimated as 1.286

By default, ar() ﬁts AR models up to lag p = 10 log (n) and selects the minimum AIC model
ar(x, method="burg")

Call:

ar(x = x, method = "burg")

Coefficients:

 1

0.9457

Order selected 1 sigma^2 estimated as 0.9576

nd <- window(log(UKNonDurables), end = c(1970, 4))

acf(diff(nd), ylim = c(-1, 1))
[image: image18.emf]0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Lag

ACF

Series diff(nd)

acf(diff(diff(nd, 4)), ylim = c(-1, 1))
[image: image19.emf]0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Lag

ACF

Series diff(diff(nd, 4))

pacf(diff(diff(nd, 4)), ylim = c(-1, 1))
[image: image20.emf]1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Lag

Partial ACF

Series diff(diff(nd, 4))

*

[image: image21.png]I, /A WIS IOUG SPpOLe 15 TN TIWIT VHILPICA Waal I W AWy aec,y
where only the order p has to be chosen, base R does not offer an automatic
model selection method for general ARIMA models based on information cri-
teria. Therefore, we use the preliminary results from the exploratory analy-
sis above and R's general tools to set up a model search for an appropriate
SARIMA (p, d, ¢)(P, D, Q) model,

S(LYA(L)(1 = LYP (1 = L)y, = O(L)O(LY)er, (62)

which amends the standard ARIMA model (6.1) by additional polynomials

ne on the seasonal freanencv

[image: image22.png]The graphical analysis clearly suggests double differencing of the original
series (d = 1, D = 1), some AR and MA effects (we allow p = 0,1,2 and
¢ =0,1,2), and low-order scasonal AR and MA parts (we use P = 0,1 and
Q= 0,1), giving a total of 36 parameter combinations to consider. Of course,
higher values for p, g, P, and Q could also be assessed. We refrain from doing so

nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2,

 sar = 0:1, sdiff = 1, sma = 0:1)

Create a data frame from all combinations of the supplied vectors or factors.

nd_aic <- rep(0, nrow(nd_pars))

for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd,

 unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])),

 k = log(length(nd)))

nd_pars[which.min(nd_aic),]
 ar diff ma sar sdiff sma

22 0 1 1 0 1 1

These computations reveal that a SARIMA(0, 1, 1)(0, 1, 1) model is best in terms of BIC, conforming well with the exploratory analysis. This model is also amously known as the airline model due to its application to a series of airline passengers in the classical text by Box and Jenkins (1970). It is reﬁtted to nd via

nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1))

nd_arima
Call:

arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1))

Coefficients:

 ma1 sma1

 -0.353 -0.5828

s.e. 0.143 0.1382

sigma^2 estimated as 9.649e-05: log likelihood = 188.14, aic = -370.2

tsdiag(nd_arima)
[image: image23.emf]Standardized Residuals

Time

1955 1960 1965 1970

-3

-1

1

0 1 2 3 4

-0.2

0.4

1.0

Lag

ACF

ACF of Residuals

2 4 6 8 10

0.0

0.6

p values for Ljung-Box statistic

lag

p value

nd_pred <- predict(nd_arima, n.ahead = 18 * 4)

plot(log(UKNonDurables))

lines(nd_pred$pred, col = 2)
[image: image24.emf]Time

log(UKNonDurables)

1955 1960 1965 1970 1975 1980 1985 1990

10.2

10.4

10.6

10.8

11.0

Stationarity, Unit Roots, and Cointegration

data("PepperPrice")

A monthly multiple time series from 1973(10) to 1996(4) with 2 variables.

black

spot price for black pepper,

white

spot price for white pepper.

plot(PepperPrice, plot.type = "single", col = 1:2)

legend("topleft", c("black", "white"), bty = "n",

 col = 1:2, lty = rep(1,2))
[image: image25.emf]Time

PepperPrice

1975 1980 1985 1990 1995

1000

2000

3000

4000

5000

6000

7000

black

white

plot(log(PepperPrice), plot.type = "single", col = 1:2)

legend("topleft", c("black", "white"), bty = "n",

 col = 1:2, lty = rep(1,2))
[image: image26.emf]Time

log(PepperPrice)

1975 1980 1985 1990 1995

7.0

7.5

8.0

8.5

black

white

plot(diff(log(PepperPrice)), plot.type = "single", col = 1:2)

legend("topleft", c("black", "white"), bty = "n",

 col = 1:2, lty = rep(1,2))

[image: image27.emf]Time

diff(log(PepperPrice))

1975 1980 1985 1990 1995

-0.2

-0.1

0.0

0.1

0.2

0.3

black

white

library("tseries")

adf.test(log(PepperPrice[, "white"]))

Augmented Dickey-Fuller Test

data: log(PepperPrice[, "white"])

Dickey-Fuller = -1.744, Lag order = 6, p-value = 0.6838

alternative hypothesis: stationary

adf.test(diff(log(PepperPrice[, "white"])))

Augmented Dickey-Fuller Test

data: diff(log(PepperPrice[, "white"]))

Dickey-Fuller = -5.336, Lag order = 6, p-value = 0.01

alternative hypothesis: stationary

Warning message:

In adf.test(diff(log(PepperPrice[, "white"]))) :

 p-value smaller than printed p-value
 Zwroty są stacjonarne
[image: image28.png]Kwiatkowski et al. (1992) proceed by testing for the presence of a random
walk component r, in the regression

Yo =d +1¢ + 54,

where d; denotes a deterministic component and &, is a stationary—more
precisely, I(0)—error process. This test is also available in the function
kpss.test() in the package tseries. The deterministic component is either
a constant or a linear time trend, the former being the default. Setting the
argument null = "Trend" yields the second version. Here, we obtain

kpss.test(log(PepperPrice[, "white"]))

KPSS Test for Level Stationarity

data: log(PepperPrice[, "white"])

KPSS Level = 0.9129, Truncation lag parameter = 3, p-value = 0.01

Warning message:

In kpss.test(log(PepperPrice[, "white"])) :

 p-value smaller than printed p-value
kpss.test(diff(log(PepperPrice[, "white"])))

KPSS Test for Level Stationarity

data: diff(log(PepperPrice[, "white"]))

KPSS Level = 0.1336, Truncation lag parameter = 3, p-value = 0.1

Warning message:

In kpss.test(diff(log(PepperPrice[, "white"]))) :

 p-value greater than printed p-value
KOINTEGRACJA
A simple method to test for cointegration is the two-step method proposed by Engle and Granger (1987). It regresses one series on the other and performs a unit root test on the residuals. This test, often named after Phillips and Ouliaris (1990), who provided the asymptotic theory, is available in the function po.test() from the package tseries
po.test(log(PepperPrice))

Phillips-Ouliaris Cointegration Test

data: log(PepperPrice)

Phillips-Ouliaris demeaned = -24.0987, Truncation lag parameter = 2, p-value =

0.02404

po.test(log(PepperPrice[,2:1]))

Phillips-Ouliaris Cointegration Test

data: log(PepperPrice[, 2:1])

Phillips-Ouliaris demeaned = -22.6762, Truncation lag parameter = 2, p-value =

0.03354

Asymetria (a kointegracja to relacja symetryczna!)
REGRESJA
[image: image29.png]UKDriverDeaths series: the log-casualties are regressed on their lags 1 and
12, essentially corresponding to the multiplicative SARIMA(1,0,0)(1,0,0)y5
model

Yo =B+ Boye—1 +Baye—rz +ep, t=13,...,192.

dd <- log(UKDriverDeaths)

dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1),

 dd12 = lag(dd, k = -12))

intersect: tworzy kilka szeregów czasowych

summary(lm(dd ~ dd1 + dd12, data = dd_dat))
Call:

lm(formula = dd ~ dd1 + dd12, data = dd_dat)

Residuals:

 Min 1Q Median 3Q Max

-0.32738 -0.07860 0.01414 0.07284 0.18849

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.42055 0.36327 1.158 0.249

dd1 0.43104 0.05327 8.091 9.10e-14 ***

dd12 0.51120 0.05653 9.043 2.65e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.09938 on 177 degrees of freedom

Multiple R-squared: 0.6766,
Adjusted R-squared: 0.673

F-statistic: 185.2 on 2 and 177 DF, p-value: < 2.2e-16

Uwaga! Nie uwzglednia, że trzy szeregi pochodzą od jednego szeregu !
library("dynlm")

summary(dynlm(dd ~ L(dd) + L(dd, 12)))
Time series regression with "ts" data:

Start = 1970(1), End = 1984(12)

Call:

dynlm(formula = dd ~ L(dd) + L(dd, 12))

Residuals:

 Min 1Q Median 3Q Max

-0.32738 -0.07860 0.01414 0.07284 0.18849

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.42055 0.36327 1.158 0.249

L(dd) 0.43104 0.05327 8.091 9.10e-14 ***

L(dd, 12) 0.51120 0.05653 9.043 2.65e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.09938 on 177 degrees of freedom

Multiple R-squared: 0.6766,
Adjusted R-squared: 0.673

F-statistic: 185.2 on 2 and 177 DF, p-value: < 2.2e-16

[image: image30.png]on each subset. In the framework ol the linear regression model, the setup 1s

ye=al B9 +e, t=mii+1.my,

Lam+l, (6.4)

where j = 1,...,m is the segment index and 30) is the segment-specific set
of regression coefficients. The indices {ny, ..., n,,} denote the set of unknown
breakpoints, and by convention ng = 0 and 1,1 = n.

library("strucchange")

dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1)

plot(dd_bp)
[image: image31.emf]0 2 4 6 8

-300

-280

-260

-240

-220

BIC and Residual Sum of Squares

Number of breakpoints

BIC

RSS

1.2

1.3

1.4

1.5

1.6

1.7

coef(dd_bp, breaks = 2)
 (Intercept) dd1 dd12

1970(1) - 1973(10) 1.457762 0.1173226 0.6944798

1973(11) - 1983(1) 1.534214 0.2182144 0.5723300

1983(2) - 1984(12) 1.686897 0.5486088 0.2141655

Ostatni okres – po wprowadzeniu pasów bezpieczeństwa
[image: image32.emf]Time

trend

1970 1975 1980 1985

7.2

7.3

7.4

7.5

7.6

plot(dd)

lines(fitted(dd_bp, breaks = 2), col = 4)

lines(confint(dd_bp, breaks = 2))
[image: image33.emf]Time

dd

1970 1975 1980 1985

7.0

7.2

7.4

7.6

7.8

Statystyczne modelowanie decyzji biznesowych

16
w darmowym pakiecie R

