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Projekt „Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na

          współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy”
# TS

library("AER")

data("UKNonDurables")

# quarterly consumption of non-durables in the United Kingdom 

plot(UKNonDurables)
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tsp(UKNonDurables) #returns the tsp attribute

# working with irregular series (e.g., with many ﬁnancial time series). 

# Consequently, various implementations for irregular time series have emerged 

# in contributed R packages, the most ﬂexible of which is “zoo”, provided by 

# the zoo package [153]

[1] 1955.00 1988.75    4.00

str(UKNonDurables)
Time-Series [1:136] from 1955 to 1989: 24030 25620 26209 27167 24620 25972 26285 27659 24780 26519 ...

time(UKNonDurables)[1:10]
[1] 1955.00 1955.25 1955.50 1955.75 1956.00 1956.25 1956.50 1956.75 1957.00 1957.25

window(UKNonDurables, end = c(1956, 4)) #podzbiór

      Qtr1  Qtr2  Qtr3  Qtr4

1955 24030 25620 26209 27167

1956 24620 25972 26285 27659

(Linear) ﬁltering [154]
data("UKDriverDeaths")

on car drivers

killed or seriously injured in the United Kingdom from 1969(1) through

1984(12). These are also known as the “seatbelt data”, as they were used

by Harvey and Durbin (1986) for evaluating the eﬀectiveness of compulsory
wearing of seatbelts introduced on 1983-01-31

plot(UKDriverDeaths)
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lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12),col = 2)
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plot(rollapply(UKDriverDeaths,12, mean)) # ruchome okno
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plot(rollapply(UKDriverDeaths, 12, sd))
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# Decomposition [155]

dd_dec <- decompose(log(UKDriverDeaths))

# simple symmetric ﬁlter as illustrated above for extracting the trend

# and derive the seasonal component by averaging the trend-adjusted observations

# from corresponding periods

# c("seasonal", "trend", "random",   "figure", "type"),
plot(dd_dec)
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plot(dd_dec$seasonal)
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plot(lines(dd_dec$figure))
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plot(dd_dec$trend)
[image: image11.emf]Time

dd_dec$trend

1970 1975 1980 1985

7.2

7.3

7.4

7.5

7.6


plot(dd_dec$random)
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dd_stl <- stl(log(UKDriverDeaths), s.window = 13)

# iteratively ﬁnds the seasonal and trend

# components by loess smoothing of the observations in moving data windows

# of a certain size
plot(dd_stl)
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plot(dd_dec$trend, ylab = "trend")

lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2)
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stl() yielding a smoother curve.
# Exponential smoothing

dd_past <- window(UKDriverDeaths, end = c(1982, 12))

dd_hw <- HoltWinters(dd_past)
Unknown parameters are determined by minimizing the squared prediction error.

The additive Holt-Winters prediction function (for time series with period length p) is

Yhat[t+h] = a[t] + h * b[t] + s[t + p + 1 + (h - 1) mod p],

where a[t], b[t] and s[t] are given by

a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])

b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]

s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
dd_pred <- predict(dd_hw, n.ahead = 24)

plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths))

lines(UKDriverDeaths)
[image: image15.emf]Holt-Winters filtering

Time

Observed / Fitted

1970 1975 1980 1985

1000

1500

2000

2500


*
# Classical Model-Based Analysis

set.seed(1234)

x <- filter(rnorm(100), 0.9, method = "recursive") #AR(1)

acf(x)
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pacf(x)
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ar(x)
Call:

ar(x = x)

Coefficients:

     1  

0.9279  

Order selected 1  sigma^2 estimated as  1.286 

By default, ar() ﬁts AR models up to lag p = 10 log (n) and selects the minimum AIC model
ar(x, method="burg")

Call:

ar(x = x, method = "burg")

Coefficients:

     1  

0.9457  

Order selected 1  sigma^2 estimated as  0.9576 

nd <- window(log(UKNonDurables), end = c(1970, 4))

acf(diff(nd), ylim = c(-1, 1))
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acf(diff(diff(nd, 4)), ylim = c(-1, 1))
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pacf(diff(diff(nd, 4)), ylim = c(-1, 1))
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*
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where only the order p has to be chosen, base R does not offer an automatic
model selection method for general ARIMA models based on information cri-
teria. Therefore, we use the preliminary results from the exploratory analy-
sis above and R's general tools to set up a model search for an appropriate
SARIMA (p, d, ¢)(P, D, Q) model,

S(LYA(L)(1 = LYP (1 = L)y, = O(L)O(LY)er, (62)

which amends the standard ARIMA model (6.1) by additional polynomials

ne on the seasonal freanencv





[image: image22.png]The graphical analysis clearly suggests double differencing of the original
series (d = 1, D = 1), some AR and MA effects (we allow p = 0,1,2 and
¢ =0,1,2), and low-order scasonal AR and MA parts (we use P = 0,1 and
Q= 0,1), giving a total of 36 parameter combinations to consider. Of course,
higher values for p, g, P, and Q could also be assessed. We refrain from doing so




nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2,

                          sar = 0:1, sdiff = 1, sma = 0:1)

# Create a data frame from all combinations of the supplied vectors or factors.

nd_aic <- rep(0, nrow(nd_pars))

for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd,

        unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])),

        k = log(length(nd)))

nd_pars[which.min(nd_aic),]
   ar diff ma sar sdiff sma

22  0    1  1   0     1   1

These computations reveal that a SARIMA(0, 1, 1)(0, 1, 1) model is best in terms of BIC, conforming well with the exploratory analysis. This model is also amously known as the airline model due to its application to a series of airline passengers in the classical text by Box and Jenkins (1970). It is reﬁtted to nd via

nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1))

nd_arima
Call:

arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1))

Coefficients:

         ma1     sma1

      -0.353  -0.5828

s.e.   0.143   0.1382

sigma^2 estimated as 9.649e-05:  log likelihood = 188.14,  aic = -370.2

tsdiag(nd_arima)
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nd_pred <- predict(nd_arima, n.ahead = 18 * 4)

plot(log(UKNonDurables))

lines(nd_pred$pred, col = 2)
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# Stationarity, Unit Roots, and Cointegration

data("PepperPrice")

# A monthly multiple time series from 1973(10) to 1996(4) with 2 variables.

# black

# spot price for black pepper,

# white

# spot price for white pepper.

plot(PepperPrice, plot.type = "single", col = 1:2)

legend("topleft", c("black", "white"), bty = "n",

          col = 1:2, lty = rep(1,2))
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plot(log(PepperPrice), plot.type = "single", col = 1:2)

legend("topleft", c("black", "white"), bty = "n",

       col = 1:2, lty = rep(1,2))
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plot(diff(log(PepperPrice)), plot.type = "single", col = 1:2)

legend("topleft", c("black", "white"), bty = "n",

       col = 1:2, lty = rep(1,2))
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library("tseries")

adf.test(log(PepperPrice[, "white"]))

Augmented Dickey-Fuller Test

data:  log(PepperPrice[, "white"]) 

Dickey-Fuller = -1.744, Lag order = 6, p-value = 0.6838

alternative hypothesis: stationary 

adf.test(diff(log(PepperPrice[, "white"])))

Augmented Dickey-Fuller Test

data:  diff(log(PepperPrice[, "white"])) 

Dickey-Fuller = -5.336, Lag order = 6, p-value = 0.01

alternative hypothesis: stationary 

Warning message:

In adf.test(diff(log(PepperPrice[, "white"]))) :

  p-value smaller than printed p-value
 Zwroty są stacjonarne
[image: image28.png]Kwiatkowski et al. (1992) proceed by testing for the presence of a random
walk component r, in the regression

Yo =d +1¢ + 54,

where d; denotes a deterministic component and &, is a stationary—more
precisely, I(0)—error process. This test is also available in the function
kpss.test() in the package tseries. The deterministic component is either
a constant or a linear time trend, the former being the default. Setting the
argument null = "Trend" yields the second version. Here, we obtain




kpss.test(log(PepperPrice[, "white"]))

KPSS Test for Level Stationarity

data:  log(PepperPrice[, "white"]) 

KPSS Level = 0.9129, Truncation lag parameter = 3, p-value = 0.01

Warning message:

In kpss.test(log(PepperPrice[, "white"])) :

  p-value smaller than printed p-value
kpss.test(diff(log(PepperPrice[, "white"])))

KPSS Test for Level Stationarity

data:  diff(log(PepperPrice[, "white"])) 

KPSS Level = 0.1336, Truncation lag parameter = 3, p-value = 0.1

Warning message:

In kpss.test(diff(log(PepperPrice[, "white"]))) :

  p-value greater than printed p-value
KOINTEGRACJA
A simple method to test for cointegration is the two-step method proposed by Engle and Granger (1987). It regresses one series on the other and performs a unit root test on the residuals. This test, often named after Phillips and Ouliaris (1990), who provided the asymptotic theory, is available in the function po.test() from the package tseries
po.test(log(PepperPrice))

Phillips-Ouliaris Cointegration Test

data:  log(PepperPrice) 

Phillips-Ouliaris demeaned = -24.0987, Truncation lag parameter = 2, p-value =

0.02404

po.test(log(PepperPrice[,2:1]))

Phillips-Ouliaris Cointegration Test

data:  log(PepperPrice[, 2:1]) 

Phillips-Ouliaris demeaned = -22.6762, Truncation lag parameter = 2, p-value =

0.03354

Asymetria ( a kointegracja to relacja symetryczna!)
REGRESJA
[image: image29.png]UKDriverDeaths series: the log-casualties are regressed on their lags 1 and
12, essentially corresponding to the multiplicative SARIMA(1,0,0)(1,0,0)y5
model
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dd <- log(UKDriverDeaths)

dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1),

                       dd12 = lag(dd, k = -12))

# intersect: tworzy kilka szeregów czasowych

summary(lm(dd ~ dd1 + dd12, data = dd_dat))
Call:

lm(formula = dd ~ dd1 + dd12, data = dd_dat)

Residuals:

     Min       1Q   Median       3Q      Max 

-0.32738 -0.07860  0.01414  0.07284  0.18849 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.42055    0.36327   1.158    0.249    

dd1          0.43104    0.05327   8.091 9.10e-14 ***

dd12         0.51120    0.05653   9.043 2.65e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.09938 on 177 degrees of freedom

Multiple R-squared: 0.6766,
Adjusted R-squared: 0.673 

F-statistic: 185.2 on 2 and 177 DF,  p-value: < 2.2e-16 

Uwaga! Nie uwzglednia, że trzy szeregi pochodzą od jednego szeregu !
library("dynlm")

summary(dynlm(dd ~ L(dd) + L(dd, 12)))
Time series regression with "ts" data:

Start = 1970(1), End = 1984(12)

Call:

dynlm(formula = dd ~ L(dd) + L(dd, 12))

Residuals:

     Min       1Q   Median       3Q      Max 

-0.32738 -0.07860  0.01414  0.07284  0.18849 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.42055    0.36327   1.158    0.249    

L(dd)        0.43104    0.05327   8.091 9.10e-14 ***

L(dd, 12)    0.51120    0.05653   9.043 2.65e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.09938 on 177 degrees of freedom

Multiple R-squared: 0.6766,
Adjusted R-squared: 0.673 

F-statistic: 185.2 on 2 and 177 DF,  p-value: < 2.2e-16 

[image: image30.png]on each subset. In the framework ol the linear regression model, the setup 1s
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Lam+l, (6.4)

where j = 1,...,m is the segment index and 30) is the segment-specific set
of regression coefficients. The indices {ny, ..., n,,} denote the set of unknown
breakpoints, and by convention ng = 0 and 1,1 = n.




library("strucchange")

dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1)

plot(dd_bp) 
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coef(dd_bp, breaks = 2)
                   (Intercept)       dd1      dd12

1970(1) - 1973(10)    1.457762 0.1173226 0.6944798

1973(11) - 1983(1)    1.534214 0.2182144 0.5723300

1983(2) - 1984(12)    1.686897 0.5486088 0.2141655

Ostatni okres – po wprowadzeniu pasów bezpieczeństwa
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plot(dd)

lines(fitted(dd_bp, breaks = 2), col = 4)

lines(confint(dd_bp, breaks = 2))
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Statystyczne modelowanie decyzji biznesowych 

16
w darmowym pakiecie R


